Posts

AIEEA UG 2015 Chemistry Syllabus

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

Unit-1 : Some Basic Concepts of Chemistry

General Introduction: Importance and scope of chemistry. Historical approach to particulate nature of matter, laws of chemical combination. Dalton’s atomic theory: concept of elements, atoms and molecules. Atomic and molecular masses mole concept and molar mass: percentage composition, empirical and molecular formula chemical reactions, stoichiometry and calculations based on stoichiometry.

Unit-2: Solid State

Classification of solid based on different binding forces : molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea), unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, voids, number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties.

Unit-3: Solutions

Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, colligative properties-relative lowering of vapour pressure, elevation of Boiling Point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass.

Unit-4: Structure of Atom

Discovery of electron, proton and neutron; atomic number, isotopes and isobars. Thomson’s model and its limitations, Rutherford’s model and its limitations. Bohr’s model and its limitations, concept of shells and subshells, dual nature of matter and light, de Broglie’s relationship. Heisenberg uncertainty principle, concept of orbitals, quantum numbers, shapes of s, p, and d orbitals, rules for filling electrons in orbitals-Aufabau principle, Pauli exclusion principle and Hund’s rule, electronic configuration of atoms, stability of half filled and completely filled orbitals.

Unit-5: Classification of Elements and Periodicity in Properties

Significance of classification, brief history of the development of periodic table, modern periodic law and the present form of periodic table, periodic trends in properties of elements –atomic radii, ionic radii. Ionization enthalpy, electron gain enthalpy, electro negativity, valence.

Unit-6: Chemical Bonding and Molecular Structure

Valence electrons, ionic bond, covalent bond: bond parameters. Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR(Valence shell electron pair repulsion) theory, concept of hybridization, involving s, p and d orbitals and shapes of some simple molecules, molecular orbitas; theory of homonuclear diatomic molecules (qualitative idea only), hydrogen bond.

Unit-7: States of Matter: Gases and Liquids

Three states of matte. Intermolecular interactions, type of bonding, melting and boiling points. Role of gas laws in elucidating the concept of the molecule, Boyle’s law. Charles law, Gay Lussac’s law, Avogadro’s law. Ideal behavior, empirical derivation of gas equation, Avogadro’s number. Ideal gas equation. Derivation from ideal behavior, liquefaction of gases, critical temperature. Liquid State- Vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical derivations)

Unit-8: Thermodynamics

Concepts of System, types of systems, surroundings, Work, heat, energy, extensive and intensive properties, state functions. First law of thermodynamics – internal energy and enthalpy, heat capacity and specific heat, measurement of DU and DH, Hess’s law of constant heat summation, enthalpy of: bond dissociation, combustion, formation, atomization, sublimation. Phase transformation, ionization, and solution. Introduction of entropy as a state function, free energy change for spontaneous and non-spontaneous processes, criteria for equilibrium.

Unit-9: Equilibrium

Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of mass of action, equilibrium constant, factors affecting equilibrium – Le Chatelier’s principle; ionic equilibrium – ionization of acids and bases, strong and weak electrolytes, degree of ionization, concept of pH. Hydrolysis of salts. Buffer solutions, solubility product, common ion effect.

Unit-10: Redox Reactions

Concept of oxidation and reduction, redox reactions, oxidation number, balancing redox reactions, applications of redox reactions.

Unit-11: Hydrogen

Position of hydrogen in periodic table, occurrence, isotopes, preparation, properties and uses of hydrogen; hydrides – ionic, covalent and interstitial; physical and chemical properties of water, heavy water; hydrogen peroxide-preparation, properties and structure; hydrogen as a fuel.

Unit-12: s-Block Elements (Alkali and Alkaline earth metals)

Group 1 and Group 2 elements

General introduction, electronic configuration, occurrence, anomalous properties of the first element each group, diagonal relationship, trends in the variation of properties (such as ionization enthalpy, atomic and ionic radii), trends in chemical reactivity with oxygen, water, hydrogen and halogens; uses.

Unit-13: Preparation and properties of some important compounds

Sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogen carbonate, biological importance of sodium and potassium. CaO, CaCO3 and industrial use of lime and limestone, biological importance of Mg and Ca

Unit-14: Some p-Block Elements

General Introduction to p-Block Elements: Group 13 elements

General introduction, electronic configuration, occurrence. Variation of properties, oxidations states, trends in chemical reactivity, anomalous properties of first element of the group; Boron-physical and chemical properties, some important compound: borax, boric acids, boron hydrides. Aluminum: uses, reactions with acids and alkalies.

Unit-15: Group 14 elements

General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous behavior of first element, Carbon – catenation, allotropic forms, physical and chemical properties; uses of some important compounds: oxides. Important compounds of silicon and a few uses: silicon tetrachloride, silicones, silicates and zeolites.

Unit-16: Organic Chemistry

Some Basic Principles and Techniques

General Introduction, methods of qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions; electrophiles and nucleophiles, types of organic reactions.

Unit-17: Hydrocarbons

Classification of hydrocarbons

Alkanes – Nomenclature, isomerism, conformations (ethane only), physical properties, chemical reactions including free radical mechanism of halogenation, combustion and pyrolysis.

Alkenes – Nomenclature, structure of double bond (ethane) geometrical isomerism, physical properties, methods of preparation; chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markovnikov’s addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition.

Alkynes – Nomenclature, structure of triple bind (ethyne), physical properties. Methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of – hydrogen, halogens, hydrogen halides and water.

Aromatic hydrocarbons: Introduction, IUPAC nomenclature; benzene: resonance, aromaticity, chemical properties mechanism of electrophilic substitution. – nitration, sulphonation, halogenations. Friedel-Craft’s alkuylation and acylation: directive influence of functional group in mono-substituted benzene; carcinogenicity and toxicity.

Unit-18: Electrochemistry

Conductance in electrolytic solutions, specific and molar conductivity variations of conductivity with concentration, Kohlrausch’s Law, electrolysis and laws of electrolysis (elementary idea), dry cell – electrolytic cells and Galvanic cells: lead accumulator, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells, fuel cells; corrosion.

Unit-19: Chemical Kinetics

Rate of a reaction (average and instantaneous), factors affecting rate of reaction; concentration, temperature, catalyst; order and molecularity of a reaction; rate law and specific rate constant, integrated rate equations and half life (only for zero and first order reactions); concept of collision theory (elementary idea, no mathematical treatment)

Unit-20: Surface Chemistry

Adsoprtion – physisorption and chemisorptions; factors affecting adsorption of gases on solids; catalysis : homogenous and heterogeneous, activity and selectivity: enzyme catalysis; colloidal state: distinction between true solutions, colloids and suspensions; lyophilic lyophobic, multimolecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulation; emulsion – types of emulsions.

Unit-21: General Principles and Processes of Isolation of Elements

Principles and methods of extraction – concentration, oxidation, reduction electrolytic method and refining; occurrence and principles of extraction of aluminium, copper, zinc and iron.

Unit-22: p-Block Elements

 Group 15 elements

General introduction, electronic configuration, occurrence, oxidation states, trends in physical and chemical properties; nitrogen – preparation, properties and uses; compounds of nitrogen: preparation and properties of ammonia and nitric acid, oxides of nitrogen (structure only); Phosphorous-allotropic froms; compounds of phosphorous: preparation and properties of phosphine, halides(PCl3, PCl5) and oxoacids

Unit-23: Group 16 elements

General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; dioxygen: preparation, properties and uses; simple oxides; Ozone. Sulphur-allotropic forms; compounds of sulphur: preparation, properties and uses of sulphur dioxide; sulphuric acid: industrial process of manufacture, properties and uses, oxoacids of sulphur (structures only).

Unit-24: Group 17 elements

General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; compounds of halogens: preparation, properties and uses of  chlorine and hydrochloric acid, interhalogen compounds, oxoacids of halogens (structures only).

Unit-25: Group 18 elements

General introduction, electronic configuration. Occurrence, trends in physical and chemical properties, uses.

Unit-26: d and f Block Elements

General introduction, electronic configuration, occurrence and characteristics of transition metals. General trends in properties of the first row transition metals – metallic character, ionization enthalpy, oxidation states, ionic radii, colour catalytic property, magnetic properties, interstitial compounds, alloy formation preparation and properties of K2Cr2O7 and KMnO4.

Lanthnoids – electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction.

Actinoids – Electronic configuration, oxidation states.

Unit-27: Coordination Compounds

Coordination compounds – Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds, bonding; isomerism, importance of coordination compounds (in qualitative analysis, extraction of metals and biological systems).

Unit-28: Haloalkanes and Haloarenes

Halokanes : Nomenclature, nature of C-X bond, physical and chemical properties, mechanism of substitution reactions.

Halorenes : Nature of C-X bond, substitution reactions (directive influence of halogen for monosubstituted compounds only) Uses and environmental effects of – dichloromethane, trichloromethane, tetrachloromethane, iodoform, freons, DDT.

Unit-29: Alcohols, Phenols and Ethers

Alcohols

Nomenclature, methods of preparation, physical and chemical  properties (of primary alcohols only); identification of primary, secondary and tertiary alcohols; mechanism of dehydration, uses of methanol and ethanol. Phenols : Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophillic substitution reactions, uses of phenols, Ethers: Nomenclature, methods of preparation, physical and chemical properties, uses,

Unit-30: Aldehydes, Ketones and Carboxylic Acids

Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties mechanism of nucleophillic addition, reactivity of alpha hydrogen in aldehydes; uses.

Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses.

Unit-31: Organic compounds containing Nitrogen

Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, identification of primary, secondary and tertiary amines.

Cyanides and Isocyanides – will be mentioned at relevant places in context.

Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry.

Unit-32: Biomolecules

Carbohydrates – Classification (aldoses and ketoses), monosaccharide (glucose and fructose), oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen); importance

Proteins – Elementary idea of a-amino acids, peptide bond, polypeptides, proteins, structure of amines-primary, secondary, tertiary structure and quaternary structures (qualitative idea only), denaturation of proteins; enzymes.

Vitamins – Classification and functions.

Nucleic Acids: DNA and RNA.

Unit-33: Polymers

Classification- natural and synthetic, methods of polymerization (addition and condensation), copolymerization. Some important polymers: natural and synthetic like polythene, nylon, polyesters, Bakelite, rubber.

Unit-34: Environmental Chemistry

Environmental pollution – air,, water and soil pollution, chemical reactions in atmosphere, smog, major atmospheric pollutants; acids rain, ozone and its reactions, effects of depletion of ozone layer, greenhouse effect and global warming – pollution due to industrial wastes; green chemistry as an alternative tool for reducing pollution, strategy for control of environmental pollution.

Unit-35: Chemistry in Everyday life

1. Chemical in Medicines – analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamines.

2. Chemical in food – preservatives, artificial sweetening agents.

3. Cleansing agents – soaps and detergents, cleansing action.

AIEEA UG 2015 Physics Syllabus

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

Unit-1 : Physical World and Measurement

Physics scope and excitement; nature of physical laws; Physics, technology and society, Need for measurement: Units of measurement; systems of units; SI nits, fundamental and derived units. Length, mass and time measurements; accuracy and precision of measuring instruments; errors in measurement; significant figures. Dimensions of physical quantities, dimensional analysis and its applications.

Unit-2: Kinematics

Frame of reference, Motion in a straight line: Position-time graph, speed and velocity. Uniform and non-uniform motion, average speed and instantaneous velocity. Uniformly accelerated motion; velocity-time graph, position-time graphs, relations for uniformly accelerated motion (graphical treatment). Elementary concepts of differentiation and integration for describing motion. Scalar and vector quantities: Position and displacement vectors, general vectors and notation, equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors. Relative velocity. Unit vector; Resolution of a vector in a plane – rectangular components. Motion in a plane. Cases of uniform velocity and uniform acceleration-projectile motion. Uniform circular motion. Motion of objects in three dimensional space. Motion of objects in three dimensional space.

Unit-3: Laws of Motion

Intuitive concept of force, Inertia, Newton’s first law of motion; momentum and Newton’s second law of motion; impulse; Newton’s third law of motion. Law of conservation of linear momentum and its applications. Equilibrium of concurrent forces, Static and kinetic friction, laws of friction, rolling friction. Dynamics of uniform circular motion:

Centripetal force, examples of circular motion(vehicle on level circular road, vehicle on banked road).

Unit-4: Work, Energy and Power

Scalar product of vectors. Work done by a constant force and a variable force; kinetic energy, work-energy, work-energy theorem, power. Notion of potential energy, potential energy of a spring, conservative forces: conservation of mechanical energy (Kinetic and potential energies); non-conservative forces: elastic and inelastic collisions in one and two dimensions)

Unit-5: Motion of System of Particles and Rigid Body

Centre of mass of a two-particle system, momentum conversation and centre of mass motion. Centre of mass of a rigid body; centre of mass of uniform rod. Vector product of vectors; moment of a force, torque, angular momentum, conservation of angular momentum with some examples. Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison of linear and rotational motions; moment of inertia, radius of gyration. Values of moments of inertia for simple geometrical objects. Statement of parallel and perpendicular axes theorems and their applications.

Unit-6: Gravitation

Keplar’s laws of planetary motion. The universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth. Gravitational potential energy; gravitational potential. Escape velocity. Orbital velocity a satellite. Geo-stationary satellites.

Unit-7: Properties of Bulk Matter

Elastic behavior, Stress-strain relationship, Hooke’s law, Young’s modulus, bulk modulus, shear, modulus of rigidity. Pressure due to a fluid column; Pascal’s law and its applications (hydraulic lift and hydraulic brakes). Effect of gravity on fluid pressure. Viscosity, Stokes’ law, terminal velocity, Reynold’s number, streamline and turbulent flow.

Bernoulli’s theorem and its applications. Surface energy and surface tension, angle of contact, application of surface tension ideas to drops, bubbles and capillary rise.

Heat, temperature, thermal expansion; specific heat-calorimetry; change of state-latent heat. Heat transfer-conduction, convection and radiation, thermal conductivity, Newton’s law of cooling.

Unit-8: Thermodynamics

Thermal equilibrium and definition of temperature (zeroth law of thermodynamics). Heat, work and internal energy, First law of thermodynamic. Second law of thermodynamics: reversible and irreversible processes. Heat engines and refrigerators.

Unit-9: Behaviour of Perfect Gas and Kinetic Theory

Equation of state of a perfect gas, work done on compressing a gas. Kinetic theory of gases – assumptions, concept of pressure. Kinetic energy and temperature; rms speed of gas molecules; degrees of freedom, law of equipartition of energy(statement only) and application to specific heats of gases; concept of mean free path, Avogadro’s number.

Unit-10: Oscillations and Waves

Periodic motion – period, frequency, displacement as a function of time. Periodic functions. Simple Harmonic Motion (S.H.M) and its equation; phase oscillations of a spring-restoring force and force constant; energy in S.H.M – kinetic and potential energies; simple pendulum – derivation of expression for its time period; free, forced and damped oscillations, resonance. Wave motion. Longitudinal and transverse waves. Speed of wave motion. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, standing waves in strings and organ pipes, fundamental mode and harmonics. Beats, Doppler effect.

Unit-11: Electrostatics

Electric Charges; Conservation of charge. Coulomb’s law – force between two point charges, forces between multiple charges; superposition

principle and continuous charge distribution. Electric field, electric field due to a point charge, electric field lines; electric dipole, electric field due to a dipole; torque on a dipole in uniform electric field. Electric fluid, statement of Gauss’s theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite  plane sheet and uniformly charged thin spherical shell (field inside and outside). Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges; equipotential surfaces, electrical potential energy of a system of two point charges and of electric dipole in an electrostatic field. Conductors and insulators, free charges and bound charges inside a conductor, Dielectrics and electric polarization, capacitors and capacitances, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor. Van de Graff generator.

Unit-12: Current Electricity

Electric current, flow of electric charges in a metallic conductor, drift velocity, mobility and their relation with electric current; Ohm’s law, electrical resistance, V – I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity. Carbon resistors, colour code for carbon resistors; series and parallel combinations of resistors; temperature dependence of resistance. Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel. Kirchoff’s laws and simple applications. Wheatstone bridge, metre bridge. Potentiometer – principle and its applications to measure potential difference and for comparing emf of two cells; measurement of internal resistance of a cell.

Unit-13: Magnetic Effects of Current and Magnetism

Concept of magnetic field, Oersted’s experiment. Biot-Savart law and its application to current carrying circular loop. Ampere’s alw and its applications to infinitely long straight wire, straight and toroidal solenoids. Force on a moving charge in uniform magnetic and electric fields.

Cyclotron. Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel current-carrying conductors-definition of ampere. Torque experienced by a current loop in uniform magnetic field; moving coil galvanometer-its current sensitivity and conversion to ammeter and voltmeter.

Current loop as a magnetic dipole and its magnetic dipole moment. Magnetic dipole moment of a revolving electron. Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis. Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements. Para-, dia- and ferro- magnetic substances, with examples Electromagnets and factors affecting their strengths. Permanent magnets.

Unit-14- Electromagnetic Induction and Alternating Currents

Electromagnetic induction; Faraday’s law, induced emf and current; Lenz’ Law, Eddy currents. Self and mutual inductance. Need for displacement current. Alternating currents, peak and rms value of alternating current/voltage; reactance and impedance; LC oscillations (qualitative treatment only). LCR series circuit, resonance; power in AC circuits, wattles current. AC generator and transformer.

Unit-15: Electromagnetic waves

Displacement current, Electromagnetic waves and their characteristics (qualitative ideas only). Transverse nature of electromagnetic waves. Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X-rays, gamma rays) including elementary facts about their uses.

Unit-16: Optics

Reflection of light, spherical mirrors, mirror formula. Refraction of light, total internal reflection and its applications, optical firbes, refraction at spherical surfaces, lenses, thin lens formula, lensmaker’s formula. Magnification, power of a lens, combination of thin lenses in contact.

Refraction and dispersion of light through a prism. Scattering of light – blue colour of the sky and reddish appearance of the sun at sunrise and sunset. Optical instruments: Human eye, image formation and accommodation. correction of eye defects (myopia, hypermetropia, presbyopia and astigmatism) using lenses. Microscopes and astronomical telescope (reflecting and refracting) and their magnifying powers. Wave optics: wave front and Huygens’ principle, reflection and refraction of plane wave at a plane surface using wave fronts. Proof of laws of reflection and refraction using Huygens’ principle. Interference, Young’s double slit experiment and expression for fringe width, coherent sources and sustained interference of light. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes. Polarization, plane polarized light; Brewster’s law, uses of p lane polarized light and Polaroids.

Unit-17: Dual Nature of Matter and Radiation

Dual nature of radiation. Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation-particle nature of light. Matter waves-wave nature of particles, de Broglie relation. Davisson-Germer experiment.

Unit-18: Atoms & Nuclei

Alpha-particle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes; isotones. Radioactivity, alpha, beta and gamma particles/rays and their properties; radioactive decay law. Mass-energy per nucleon and its variation with mass number; nuclear fission, nuclear reactor, nuclear fusion.

Unit-19: Electronic Devices

Semiconductor; semiconductor diode – I – V characteristics in forward and reverse bias, diode as a rectifier; I – V characteristics of LED, photodiode, solar cell, and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor; transistor as an

amplifier (common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR). Transistor as a switch.

Unit-20: Communication Systems

Elements of a communication system (block diagram only); bandwidth of signals (speech, TV and digital data); bandwidth of transmission medium. Propagation of electromagnetic waves in the atmosphere, sky and space wave propagation. Need for modulation. Production and detection of an amplitude-modulated wave.

AIEEA UG 2015 Syllabus

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

The Indian Council of Agricultural Research (ICAR) is an autonomous organisation under the Department of Agricultural Research and Education (DARE), Ministry of Agriculture, Government of India.

Syllabus for ICAR AIEEA UG 2015 Entrance Examination are Physics Syllabus, Chemistry Syllabus, Biology Syllabus, Mathematics Syllabus and Agriculture Syllabus.

AIEEA – UG – 2015 Physics Syllabus

AIEEA – UG – 2015 Chemistry Syllabus

AIEEA – UG – 2015 Biology Syllabus

AIEEA – UG – 2015 Mathematics Syllabus

AIEEA – UG – 2015 Agriculture Syllabus

Pages

Nothing Found

Sorry, no posts matched your criteria