## Tag Archives: JEE Main Score Card

## JEE Main 2015 Mode of Exam

- The Paper-1 (B.E./B. Tech.) of JEE (Main) will be conducted in two separate modes i.e. Offline (Pen and Paper Based Examination) mode and Online (Computer Based Examination) mode.
- The Paper-2 (B. Arch./B. Planning.) of JEE (Main) will be conducted only in Pen and Paper based examination mode.
- A candidate will opt for either Pen and Paper Based or Computer Based examination modes for Paper-1 (B. E./B. Tech.) only.
- The candidate have a choice to change the
**JEE Main 2015 Mode of Exam**(either online or offline). - But a candidate can have opted to change the mode of examination from pen and paper examination to computer based examination only (not simultaneously).

JEE Main 2015 Links:-

JEE Main 2015 Application Form

Tags: JEE Main, JEE Main 2015 Books, JEE Main 2015 Date, JEE Main 2015 Exam Date, JEE Main 2015 Important Dates, JEE Main 2015 Mode of Exam, JEE Main 2015 News, JEE Main 2015 Pattern, JEE MAIN Application Form Number, JEE Main Counselling & Admission Procedure, jee main difficulty level, jee main helpline, JEE main reservation, JEE Main Score Card, Syllabus of JEE Main 2015

## JEE Main 2015 Important Dates

#### Exam dates for JEE Main 2015 will update you shortly .

#### The schedule will be mention as per the official site for JEE Main 2015 entrance exam.

JEE Main 2015 Links:-

JEE Main 2015 Application Form

Tags: JEE Main, JEE Main 2015 Books, JEE Main 2015 Date, JEE Main 2015 Exam Date, JEE Main 2015 Important Dates, JEE Main 2015 News, JEE Main 2015 Pattern, JEE MAIN Application Form Number, JEE Main Counselling & Admission Procedure, jee main difficulty level, jee main helpline, JEE main reservation, JEE Main Score Card, Syllabus of JEE Main 2015## JEE Main 2015 Helpline Numbers

**The Executive Director**#### JEE(Main), CBSE

#### Plot No. 482, F.I.E,

#### Industrial Area, Patparganj,

#### Delhi-110092.

**Telephone No.:**011-22144770, 011-22144774, 011-22144775**Helpline No.:**8506061071 , 8506061072 , 8506061073 , 8506061074 , 8506061075 , 8506061076 , 8506061077, 8506061078**Email:**jeemain[at]nic[dot]in

## JEE Main 2014 Score and Result

- The score of Paper-I of JEE (Main) – 2014 for all candidates will be declared by 3rd May 2014. This score shall comprise the actual marks obtained in Paper-I of JEE (Main) – 2014 along with the status of those who qualify for appearing in JEE (Advanced) – 2014 provided and subject to other conditions of eligibility being met.
- Separately, on the basis of score in JEE (Main)-2014 and normalised score in Class 12th or equivalent qualifying exam (60% & 40% weightage respectively), separate rank lists will be prepared for admission to B.E./B. Tech. and B. Arch/ B. Planning (in institutions other than IITs). This will be declared by 7th of July 2014. JEE (Main)-2014 Rank Card indicating All India Rank, State Rank and Category Rank with total marks and marks in each paper will be available on JEE (Main) website after the declaration of result.
- Only the All India Rank (AIR) is used for admissions through Central Counselling Board to NITs/IIITs/CFTIs/SFIs/Others, while other ranks are for information purposes.
- It has been decided that, from this year, no score/rank card will be dispatched to the candidates and the candidates are advised to download their score/rank cards from the JEE (Main) website http://jeemain.nic.in only.
- In case of a tie, i.e. when two or more candidates obtain equal marks (by giving 60% weightage to performance in JEE (Main) and 40% weightage to normalised marks in Class 12th or equivalent qualifying examination).

**JEE Main 2014 Rank list for Admission to B.E/B.Tech(in institutions other than IITs)**

**JEE Main 2014 Rank list for admission to B.Arch /B.Planning (in institutions other than IITs)**

## Syllabus for JEE Main 2014 Chemistry

**CHEMISTRY**

** SECTION: A**

** PHYSICAL CHEMISTRY**

**UNIT 1: SOME BASIC CONCEPTS IN CHEMISTRY**

Matter and its nature, Dalton’s atomic theory; Concept of atom, molecule, element and compound; Physical quantities and their measurements in Chemistry, precision and accuracy, significant figures, S.I. Units, dimensional analysis; Laws of chemical combination; Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae; Chemical equations and stoichiometry.

**UNIT 2: STATES OF MATTER**

Classification of matter into solid, liquid and gaseous states.

Gaseous State: Measurable properties of gases; Gas laws – Boyle’s law, Charle’s law, Graham’s law of diffusion, Avogadro’s law, Dalton’s law of partial pressure; Concept of Absolute scale of temperature; Ideal gas equation; Kinetic theory of gases (only postulates); Concept of average, root mean square and most probable velocities; Real gases, deviation from Ideal behaviour, compressibility factor and van der Waals equation.

LiquidState:

Properties of liquids – vapour pressure, viscosity and surface tension and effect of temperature on them (qualitative treatment only).

SolidState:

Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea); Bragg’s Law and its applications; Unit cell and lattices, packing in solids (fcc, bcc and hcp lattices), voids, calculations involving unit cell parameters, imperfection in solids; Electrical, magnetic and dielectric properties.

**UNIT 3: ATOMIC STRUCTURE**

Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of hydrogen atom, Bohr model of hydrogen atom – its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr’s model; Dual nature of matter, de-Broglie’s relationship, Heisenberg uncertainty principle. Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features, ?? and ??2, concept of atomic orbitals as one electron wave functions; Variation of ?? and ??2 with r for 1s and 2s orbitals; various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance; shapes of s, p and d – orbitals, electron spin and spin quantum number; Rules for filling electrons in orbitals – aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of elements, extra stability of half-filled and completely filled orbitals.

**UNIT 4: CHEMICAL BONDING AND MOLECULAR STRUCURE**

Kossel – Lewis approach to chemical bond formation, concept of ionic and covalent bonds.

Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy.

Covalent Bonding: Concept of electronegativity, Fajan’s rule, dipole moment; Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules.

Quantum mechanical approach to covalent bonding:Valencebond theory – Its important features, concept of hybridization involving s, p and d orbitals;

Resonance.

Molecular Orbital Theory – Its important features, LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of homonuclear diatomic molecules, concept of bond order, bond length and bond energy.

Elementary idea of metallic bonding. Hydrogen bonding and its applications.

**UNIT 5: CHEMICAL THERMODYNAMICS**

Fundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes.

First law of thermodynamics – Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity; Hess’s law of constant heat summation;

Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ionization and solution.

Second law of thermodynamics; Spontaneity of processes; DS of the universe and DG of the system as criteria for spontaneity, Dgo (Standard Gibbs energy change) and equilibrium constant.

**UNIT 6: SOLUTIONS**

Different methods for expressing concentration of solution – molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult’s Law – Ideal and non-ideal solutions, vapour pressure – composition, plots for ideal and non-ideal solutions; Colligative properties of dilute solutions – relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, van’t Hoff factor and its significance.

**UNIT 7: EQUILIBRIUM**

Meaning of equilibrium, concept of dynamic equilibrium.

Equilibria involving physical processes: Solid -liquid, liquid – gas and solid – gas

equilibria, Henry’s law, general characterics of equilibrium involving physical processes.

Equilibria involving chemical processes: Law of chemical equilibrium, equilibrium constants (Kp and Kc) and their significance, significance of DG and DGo in chemical equilibria, factors affecting equilibrium concentration, pressure, temperature, effect of catalyst; Le Chatelier’s principle.

Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius, Br??nsted – Lowry and Lewis) and their ionization, acid – base equilibria (including multistage ionization) and ionization constants, ionization of water, pH scale, common ion effect, hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products, buffer solutions.

**UNIT 8: REDOX REACTIONS AND ELECTROCHEMISTRY**

Electronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions.

Eectrolytic and metallic conduction, conductance in electrolytic solutions, specific and molar conductivities and their variation with concentration:

Kohlrausch’s law and its applications.

Electrochemical cells – Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half – cell and cell reactions, emf of a Galvanic cell and its measurement; Nernst equation and its applications; Relationship between cell potential and Gibbs’ energy change; Dry cell and lead accumulator; Fuel cells.

**UNIT 9 : CHEMICAL KINETICS**

Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure and catalyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first order reactions, their characteristics and half – lives, effect of temperature on rate of reactions –

Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).

**UNIT-10 : SURFACE CHEMISTRY**

Adsorption- Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids – Freundlich and Langmuir adsorption isotherms, adsorption from solutions.

Colloidal state – distinction among true solutions, colloids and suspensions, classification of colloids – lyophilic, lyophobic; multi molecular, macromolecular and associated colloids (micelles), preparation and properties of colloids -

Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation; Emulsions and their characteristics.

**SECTION – B**

**INORGANIC CHEMISTRY**

**UNIT 11: CLASSIFICATON OF ELEMENTS AND PERIODICITY IN PROPERTIES**

Modem periodic law and present form of the periodic table, s, p, d and f block elements, periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity.

**UNIT 12: GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF METALS**

Modes of occurrence of elements in nature, minerals, ores; Steps involved in the extraction of metals – concentration, reduction (chemical and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn and Fe; Thermodynamic and electrochemical principles involved in the extraction of metals.

**UNIT 13: HYDROGEN**

Position of hydrogen in periodic table, isotopes, preparation, properties and uses of hydrogen; Physical and chemical properties of water and heavy water; Structure, preparation, reactions and uses of hydrogen peroxide; Hydrogen as a fuel.

**UNIT 14: S – BLOCK ELEMENTS (ALKALI AND ALKALINE EARTH METALS)**

Group – 1 and 2 Elements

General introduction, electronic configuration and general trends in physical and chemical properties of elements, anomalous properties of the first element of each group, diagonal relationships.

Preparation and properties of some important compounds – sodium carbonate and sodium hydroxide; Industrial uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg and Ca.

**UNIT 15: P – BLOCK ELEMENTS**

Group – 13 to Group 18 Elements

General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group.

Groupwise study of the p – block elements

Group – 13

Preparation, properties and uses of boron and aluminium; properties of boric acid, diborane, boron trifluoride, aluminium chloride and alums.

Group – 14

Allotropes of carbon, tendency for catenation; Structure & properties of silicates, and zeolites.

Group – 15

Properties and uses of nitrogen and phosphorus; Allotrophic forms of phosphorus; Preparation, properties, structure and uses of ammonia, nitric acid, phosphine and phosphorus halides, (PCl3, PCl5); Structures of oxides and oxoacids of phosphorus.

Group – 16

Preparation, properties, structures and uses of ozone; Allotropic forms of sulphur; Preparation, properties, structures and uses of sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur.

Group – 17

Preparation, properties and uses of hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens.

Group –18

Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.

**UNIT 16: d – and f – BLOCK ELEMENTS**

Transition Elements

General introduction, electronic configuration, occurrence and characteristics, general trends in properties of the first row transition elements – physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties and uses of K2 Cr2 O7 and KMnO4.

Inner Transition Elements

Lanthanoids – Electronic configuration, oxidation states and lanthanoid contraction.

Actinoids – Electronic configuration and oxidation states.

**UNIT 17: CO-ORDINATION COMPOUNDS**

Introduction to co-ordination compounds, Werner’s theory; ligands, coordination number, denticity, chelation; IUPAC nomenclature of mononuclear co-ordination compounds, isomerism; Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).

**UNIT 18: ENVIRONMENTAL CHEMISTRY**

Environmental pollution – Atmospheric, water and soil.

Atmospheric pollution – Tropospheric and Stratospheric

Tropospheric pollutants – Gaseous pollutants: Oxides of carbon, nitrogen and sulphur, hydrocarbons; their sources, harmful effects and prevention; Green house effect and Global warming; Acid rain;

Particulate pollutants: Smoke, dust, smog, fumes, mist; their sources, harmful effects and prevention.

Stratospheric pollution- Formation and breakdown of ozone, depletion of ozone layer – its mechanism and effects.

Water Pollution – Major pollutants such as, pathogens, organic wastes and chemical pollutants; their harmful effects and prevention.

Soil pollution – Major pollutants such as: Pesticides (insecticides,. herbicides and fungicides), their harmful effects and prevention.

Strategies to control environmental pollution.

**SECTION-C**

**ORGANIC CHEMISTRY**

**UNIT 19: PURIFICATION AND CHARACTERISATION OF ORGANIC COMPOUNDS**

Purification – Crystallization, sublimation, distillation, differential extraction and chromatography – principles and their applications.

Qualitative analysis – Detection of nitrogen, sulphur, phosphorus and halogens.

Quantitative analysis (basic principles only) – Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus.

Calculations of empirical formulae and molecular formulae; Numerical problems in organic quantitative analysis.

**UNIT 20: SOME BASIC PRINCIPLES OF ORGANIC CHEMISTRY**

Tetravalency of carbon; Shapes of simple molecules – hybridization (s and p);

Classification of organic compounds based on functional groups: – C = C – , – Ch C – and those containing halogens, oxygen, nitrogen and sulphur;

Homologous series; Isomerism – structural and stereoisomerism.

Nomenclature (Trivial and IUPAC)

Covalent bond fission – Homolytic and heterolytic: free radicals, carbocations and carbanions; stability of carbocations and free radicals, electrophiles and nucleophiles.

Electronic displacement in a covalent bond

- Inductive effect, electromeric effect, resonance and hyperconjugation.

**UNIT 21: HYDROCARBONS**

Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions.

Alkanes – Conformations: Sawhorse and Newman projections (of ethane);

Mechanism of halogenation of alkanes.

Alkenes – Geometrical isomerism; Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff’s and peroxide effect); Ozonolysis and polymerization.

Alkynes – Acidic character; Addition of hydrogen, halogens, water and hydrogen halides; Polymerization.

Aromatic hydrocarbons – Nomenclature, benzene – structure and aromaticity;

Mechanism of electrophilic substitution: halogenation, nitration, Friedel – Craft’s alkylation and acylation, directive influence of functional group in monosubstituted benzene.

**UNIT 22: ORGANIC COMPOUNDS CONTAINING HALOGENS**

General methods of preparation, properties and reactions; Nature of C-X bond;

Mechanisms of substitution reactions.

Uses; Environmental effects of chloroform & iodoform.

**UNIT 23: ORGANIC COMPOUNDS CONTAINING OXYGEN**

General methods of preparation, properties, reactions and uses.

*ALCOHOLS, PHENOLS AND ETHERS*

Alcohols: Identification of primary, secondary and tertiary alcohols; mechanism of dehydration.

Phenols: Acidic nature, electrophilic substitution reactions: halogenation, nitration and sulphonation, Reimer – Tiemann reaction.

Ethers: Structure.

Aldehyde and Ketones: Nature of carbonyl group;Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones; Important reactions such as – Nucleophilic addition reactions (addition of HCN, NH3 and its derivatives),

Grignard reagent; oxidation; reduction (Wolff Kishner and Clemmensen); acidity of ı – hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction; Chemical tests to distinguish between aldehydes and Ketones.

*CARBOXYLIC ACIDS*

Acidic strength and factors affecting it.

**UNIT 24: ORGANIC COMPOUNDS CONTAINING NITROGEN**

General methods of preparation, properties, reactions and uses.

Amines: Nomenclature, classification, structure, basic character and identification of primary, secondary and tertiary amines and their basic character.

Diazonium Salts: Importance in synthetic organic chemistry.

**UNIT 25: POLYMERS**

General introduction and classification of polymers, general methods of polymerization-addition and condensation, copolymerization;

Natural and synthetic rubber and vulcanization; some important polymers with emphasis on their monomers and uses – polythene, nylon, polyester and bakelite.

**UNIT 26: BIOMOLECULES**

General introduction and importance of biomolecules.

CARBOHYDRATES – Classification: aldoses and ketoses; monosaccharides (glucose and fructose) and constituent monosaccharides of oligosacchorides (sucrose, lactose and maltose).

PROTEINS – Elementary Idea of ı – amino acids, peptide bond, polypeptides;

Proteins: primary, secondary, tertiary and quaternary structure (qualitative idea only), denaturation of proteins, enzymes.

VITAMINS – Classification and functions.

NUCLEIC ACIDS – Chemical constitution of DNA and RNA.

Biological functions of nucleic acids.

**UNIT 27: CHEMISTRY IN EVERYDAY LIFE**

Chemicals in medicines – Analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamins – their meaning and common examples.

Chemicals in food – Preservatives, artificial sweetening agents – common examples.

Cleansing agents – Soaps and detergents, cleansing action.

**UNIT 28: PRINCIPLES RELATED TO PRACTICAL CHEMISTRY**

• Detection of extra elements (N,S, halogens) in organic compounds; Detection of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl and amino groups in organic compounds.

• Chemistry involved in the preparation of the following:

Inorganic compounds: Mohr’s salt, potash alum.

Organic compounds: Acetanilide, pnitroacetanilide, aniline yellow, iodoform.

• Chemistry involved in the titrimetric excercises – Acids bases and the use of indicators, oxalic-acid vs KMnO4, Mohr’s salt vs KMnO4.

• Chemical principles involved in the qualitative salt analysis:

Cations – Pb2+ , Cu2+, AI3+, Fe3+, Zn2+, Ni2+, Ca2+, Ba2+, Mg2+, NH4+.

Anions- CO3 2-, S2-, SO4 2-, NO2-, NO3-, CI -, Br, I.

(Insoluble salts excluded).

• Chemical principles involved in the following experiments:

1. Enthalpy of solution of CuSO4

2. Enthalpy of neutralization of strong acid and strong base.

3. Preparation of lyophilic and lyophobic sols.

4. Kinetic study of reaction of iodide ion with hydrogen peroxide at room temperature.

Back to Syllabus for JEE Main 2014

**Related Links to JEE Main :**

- JEE Main Home
- JEE Main 2014 Syllabus
- JEE Main 2014 Exam Pattern
- JEE Main 2014 Exam Date
- JEE Main 2014 Exam Centres

## Syllabus for JEE Main 2014 Mathematics

**MATHEMATICS**

**UNIT 1: SETS, RELATIONS AND FUNCTIONS:**

Sets and their representation; Union, intersection and complement of sets and their algebraic properties; Power set; Relation, Types of relations, equivalence relations, functions;. one-one, into and onto functions, composition of functions.

**UNIT 2: COMPLEX NUMBERS AND QUADRATIC EQUATIONS:**

Complex numbers as ordered pairs of reals, Representation of complex numbers in the form a+ib and their representation in a plane, Argand diagram, algebra of complex numbers, modulus and argument (or amplitude) of a complex number, square root of a complex number, triangle inequality, Quadratic equations in real and complex number system and their solutions. Relation between roots and co-efficients, nature of roots, formation of quadratic equations with given roots.

**UNIT 3: MATRICES AND DETERMINANTS:**

Matrices, algebra of matrices, types of matrices, determinants and matrices of order two and three.

Properties of determinants, evaluation of determinants, area of triangles using determinants. Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations, Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices.

**UNIT 4: PERMUTATIONS AND COMBINATIONS:**

Fundamental principle of counting, permutation as an arrangement and combination as selection, Meaning of P (n,r) and C (n,r), simple applications.

**UNIT 5: MATHEMATICAL INDUCTION:**

Principle of Mathematical Induction and its simple applications.

**UNIT 6: BINOMIAL THEOREM AND ITS SIMPLE APPLICATIONS**

Binomial theorem for a positive integral index, general term and middle term, properties of Binomial coefficients and simple applications.

**UNIT 7: SEQUENCES AND SERIES:**

Arithmetic and Geometric progressions, insertion of arithmetic, geometric means between two given numbers. Relation between A.M. and G.M. Sum upto n terms of special series: S n, S n2, Sn3.

Arithmetico – Geometric progression.

**UNIT 8: LIMIT, CONTINUITY AND DIFFERENTIABILITY:**

Real – valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic and exponential functions, inverse functions. Graphs of simple functions. Limits, continuity and differentiability. Differentiation of the sum, difference, product and quotient of two functions. Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives of order upto two. Rolle’s and Lagrange’s Mean Value Theorems. Applications of derivatives: Rate of change of quantities, monotonic – increasing and decreasing functions, Maxima and minima of functions of one variable, tangents and normals.

**UNIT 9: INTEGRAL CALCULUS:**

Integral as an anti – derivative. Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions. Integration by substitution, by parts and by partial fractions. Integration using trigonometric identities.

Evaluation of simple integrals of the type Integral as limit of a sum. Fundamental Theorem of Calculus. Properties of definite integrals. Evaluation of definite integrals, determining areas of the regions bounded by simple curves in standard form.

**UNIT 10: DIFFERENTIAL EQUATIONS:**

Ordinary differential equations, their order and degree. Formation of differential equations. Solution of differential equations by the method of separation of variables, solution of homogeneous and linear differential equations of the type:

dy+ p (x) y = q (x)

dx

**UNIT 11: CO-ORDINATE GEOMETRY:**

Cartesian system of rectangular co-ordinates 10 in a plane, distance formula, section formula, locus and its equation, translation of axes, slope of a line, parallel and perpendicular lines, intercepts of a line on the coordinate axes.

Straight lines

Various forms of equations of a line, intersection of lines, angles betweentwo lines, conditions for concurrence of three lines, distance of a point from a line, equations of internal and external bisectors of angles between two lines, coordinates of centroid, orthocentre and circumcentre of a triangle, equation of family of lines passing through the point of intersection of two lines.

Circles, conic sections

Standard form of equation of a circle, general form of the equation of a circle, its radius and centre, equation of a circle when the end points of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to a circle, equation of the tangent. Sections of cones, equations of conic sections (parabola, ellipse and hyperbola) in standard forms, condition for y = mx + c to be a tangent and point (s) of tangency.

**UNIT 12 THREE DIMENSIONAL GEOMETRY:**

Coordinates of a point in space, distance between two points, section formula, direction ratios and direction cosines, angle between two intersecting lines.

Skew lines, the shortest distance between them and its equation. Equations of a line and a plane in different forms, intersection of a line and a plane, coplanar lines.

**UNIT 13: VECTOR ALGEBRA:**

Vectors and scalars, addition of vectors, components of a vector in two dimensions and three dimensional space, scalar and vector products, scalar and vector triple product.

**UNIT 14: STATISTICS AND PROBABILITY:**

Measures of Dispersion: Calculation of mean, median, mode of grouped and ungrouped data calculation of standard deviation, variance and mean deviation for grouped and ungrouped data.

Probability: Probability of an event, addition and multiplication theorems of probability, Baye’s theorem, probability distribution of a random variate, Bernoulli trials and Binomial distribution.

**UNIT 15: TRIGONOMETRY:**

Trigonometrical identities and equations. Trigonometrical functions. Inverse trigonometrical functions and their properties. Heights and Distances.

**UNIT 16: MATHEMATICAL REASONING:**

Statements, logical operations and, or, implies, implied by, if and only if. Understanding of tautology, contradiction, converse and contrapositive

Back to Syllabus for JEE Main 2014

**Related Links to JEE Main :**

- JEE Main Home
- JEE Main 2014 Syllabus
- JEE Main 2014 Exam Pattern
- JEE Main 2014 Exam Date
- JEE Main 2014 Exam Centres

Tags: About JEE Main, JEE Main, jee main 2014, JEE Main mathematics syllabus, JEE Main Score Card, JEE Main Syllabus, rank, score, topper

## JEE Main 2013 Topper

JEE Main **2013** result is out and Anagh Prasad from Ranchi stood top in the all India engineering entrance by scoring **345** out of **360**. A student of Jawahar Vidya Mandir , Ranchi (Jharkhand), his JEE Main score card is as follows :

Physics : 115 / 120

Chemistry : 110 / 120

Mathematics : 120 /120

Total : 345 / 360

He passed his class X board exam from DAV Kapildeo school with exemplary grades. As secret of his success he revealed that he did not take study as a burden but as a duty ; started preparing for the test well ahead since class XI. Commenting on the new JEE Main Concept as stressful and burdensome he suggested future aspirants to stay focused and practice well and give good amount of time for study.

- JEE Main 2014 Achiever’s Plan
- JEE Main Model Papers (15+1 Sets)
- JEE Main Model Papers (10+1 Sets)
- JEE Main 2014 Sample Paper(Free for registered user)
- JEE Main 2013 Exam Paper(Free for registered user)

**Related Links to JEE Main :**

- JEE Main Home
- JEE Main 2014 Syllabus
- JEE Main 2014 Exam Pattern
- JEE Main 2014 Exam Date
- JEE Main 2014 Exam Centres

Tags: All India Engineering Entrance, Class X Board Exam, JEE Main, JEE Main 2013 Result, JEE Main Concept, JEE MAIN Model Question Paper PDF, JEE Main Sample Paper, JEE Main Score Card